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Machine learning has been incorporated to make predic-
tions within a wide variety of digital services, ranging 
from search engines to e-commerce to social media plat-

forms, thereby nurturing the booming digital economy. In these 
scenarios, the prediction accuracy and efficiency of machine learn-
ing techniques are the objectives of optimization, but the potential 
risks from erroneous predictions are less important. For applica-
tions such as predicting clicks or classifying images, models can be 
updated frequently, and errors are not too costly. Thus, these appli-
cation areas are well-suited to black-box techniques combined with 
ongoing performance monitoring.

Over recent years, however, machine learning has been applied 
in a wider variety of domains, even entering high-stakes areas such 
as healthcare, industrial manufacturing, financing and the admin-
istration of justice. In these areas, mistakes made by machine learn-
ing algorithms may bring tremendous risks, and mistakes have 
substantial consequences for social issues such as safety, ethics and 
justice—especially when algorithmic predictions play substantial 
roles in a decision-making process. In such settings, the environ-
ment may change more quickly than the model is updated, and 
properties beyond short-term predictive performance become 
increasingly important.

In particular, we regard the lack of stability, explainability and 
fairness guarantees as the most critical and urgent factors that must 
be addressed in today’s machine learning.

Key factors to address
Stability. Predicting future outcome values on the basis of their 
observed features using a model estimated on a training dataset is 
a standard machine learning problem. Many learning algorithms 
have been proposed and shown to be successful when the test data 
and training data come from the same distribution. However, the 
best-performing models for a given distribution of training data 
typically exploit subtle statistical associations among features, mak-
ing them potentially more prone to prediction error when applied 
to test data whose distribution differs from that of the training data. 
In real applications, a distribution shift from training to testing is 

often inevitable; the consequence is that machine learning algo-
rithms will have unstable performance when applied in different 
testing environments with unknown distribution shifts, thus mak-
ing them unreliable.

Explainability. Owing to the high complexity encountered in many 
applications, it is not realistic to expect machine learning algo-
rithms to produce predictive or prescriptive results with such high 
accuracy that humans can rely on them. Particularly in high-stakes 
areas, or in settings where it is difficult to quantify all of the impor-
tant consequences of a decision, it may be preferable to let humans 
remain in the decision loop and serve as the final gatekeeper1. This 
necessitates a common language for the algorithms and humans 
to understand and collaborate. Most off-the-shelf machine learn-
ing models at present are black-box models: both the algorithmic 
process and the prediction results cannot easily be explained to 
humans. Although a strand of research on explainable AI exists, 
most studies try to partially explain black-box models, rather than 
design inherently interpretable models 2.

Fairness. With the recent trend of applying machine learning to 
societal problems, fairness issues have raised significant concerns 
among researchers and the public. Mainstream machine learning 
algorithms could amplify the bias existing in data, which could 
result in ’unfair’ outcomes. For example, COMPAS is a widely used 
tool in US courts to judge whether a defendant will commit a crime 
in the future. However, it was reported to produce higher false posi-
tive rates for Black defendants than for white defendants—a finding 
widely interpreted as unfair to Black defendants3. This is only one 
of the many cases where machine learning may negatively impact 
social outcomes if fairness concerns are not sufficiently addressed.

In the following, we discuss some key drivers of risks like these, 
as well as the opportunities and challenges for the ideas from causal 
inference to address them. We then introduce the development 
of stable learning with the goal of finding the common ground 
between causal inference and machine learning and its implications 
for addressing explainability and fairness problems.

Stable learning establishes some common ground 
between causal inference and machine learning
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Causal inference has recently attracted substantial attention in the machine learning and artificial intelligence community. It is 
usually positioned as a distinct strand of research that can broaden the scope of machine learning from predictive modelling to 
intervention and decision-making. In this Perspective, however, we argue that ideas from causality can also be used to improve 
the stronghold of machine learning, predictive modelling, if predictive stability, explainability and fairness are important. With 
the aim of bridging the gap between the tradition of precise modelling in causal inference and black-box approaches from 
machine learning, stable learning is proposed and developed as a source of common ground. This Perspective clarifies a source 
of risk for machine learning models and discusses the benefits of bringing causality into learning. We identify the fundamental 
problems addressed by stable learning, as well as the latest progress from both causal inference and learning perspectives, and 
we discuss relationships with explainability and fairness problems.
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Spurious correlation is a key source of risk
Machine learning models, taking supervised learning as an exam-
ple, eventually learn linear or nonlinear correlation relationships 
between input variables and output variables. That is to say, correla-
tion is the statistical basis of these learning algorithms. Correlations 
in data can arise for a variety of reasons. Several important scenarios 
are illustrated in Fig. 1.

Causality. When one of the two variables is the direct or indirect 
cause of the other, there is an association between them, as shown 
in Fig. 1a. For example, weather (that is, S) affects crop yields (Y), 
therefore the weather in a season is correlated with crop yields in 
that season. This type of relationship reflects intrinsic and universal 
dependency among variables and remains invariant across different 
settings, even if the magnitude depends on context.

Confounding. When two variables share common causes (that is, 
confounders), they will be associated with one another, as shown 
in Fig. 1b. For example, the condition of a patient (that is, S), espe-
cially the seriousness of his/her disease, is the common cause of ICU 
treatment (that is, V) and recovery rate (Y). If we directly measure 
the correlation between ICU treatment and recovery rate without 
properly balancing the conditions of patients, we will get an errone-
ous conclusion that ICU treatment leads to a lower recovery rate—
a spurious correlation. This kind of (unconditional) correlation 
is usually difficult to interpret. Meanwhile, since the strength and 
even sign of a correlation depend on the correlation between S and 
V, its stability is weak when the joint distribution of features varies 
across environments.

Data selection bias. Data selection bias is common and even inevi-
table in real cases where data is selected in a way that differs from 
the target population. A typical case is shown in Fig. 1c, where ana-
lysing data only for observations with a high value of the selection 
variable Se will result in spurious correlations among V, S and Y. 
Consider an example of image classification in the ‘dog’ category. 
We might collect a training dataset in which most positive samples 
depict dogs on grass; the features of grass (that is, V) will then be 
spuriously correlated with the features of dog (S), and thus lead to 
a spurious correlation between features of grass and the ‘dog’ label 
(Y). Given that data selection bias is usually induced unintentionally, 
such spurious correlations can be difficult to identify in advance. If 
the training data distribution differs from the test data, predictions 
will be inaccurate.

Among these three ways of generating a correlation, only the 
correlations generated by a causal relationship reflect the intrinsic 
dependency among variables; the other two types are spurious cor-
relations sensitive to the joint distribution of features and the data 
collection processes. Nevertheless, in today’s off-the-shelf machine 
learning, black-box models do not even try to differentiate the three 
different ways in which these correlations are generated. Therefore, 

their predictive performance depends heavily on how much the test 
distribution shifts from the training distribution, leading to unsta-
ble performance under varying test distributions. Meanwhile, a pre-
dictive model based on spurious correlation may also be unfair. To 
fundamentally address the risks of stability, explainability and fair-
ness, we need to embrace and emphasize causality in the machine 
learning framework.

Challenges and opportunities for causality in predictive 
modelling
A causal model matches the underlying process the generating 
data. In Fig. 2 we showcase the physical process for generating data-
sets, occurring over time. By the very nature of prediction prob-
lems, an analyst is attempting to use the pre-outcome variables to 
predict future and unseen outcomes. In product recommendation 
systems, a user characterized by his/her attributes shows varying 
levels of interest in products with different attributes, and finally 
generates purchasing behaviour simultaneously caused by his/her 
and product attributes. In image classification problems, a photo is 
first selected into the dataset, then an image annotator observes the 
photo content and extracts features, and finally he/she annotates the 
photo with a category label according to his/her understanding of 
the visual content. Therefore, features of an image are the causes 
and its label is the effect. Although this scenario is described as an 
example of an anticausal case in ref. 4, the causal structure they pro-
pose is a description of the data generation mechanism of P(X, Y), 
rather than P(Y∣X) which is the object of interest for predictive 
modelling. If the generating process is described alongside relevant 
features of the environment, the process is fundamentally stable. 
This could serve as an important motivation for machine learning 
researchers to incorporate causality into machine learning predic-
tion problems5.

Estimating causal effects using observational data requires 
strong assumptions. One of the most popular approaches can be 
described as follows. First, the researcher observes potential con-
founders, and assumes that after adjusting for these observed con-
founders, treatment assignment is independent of a unit’s potential 
outcomes. This assumption is referred to as unconfoundedness6. 
A second assumption is the stable unit treatment value assump-
tion (that is, the response of a particular unit depends only on its 
treatment, not the treatments of other units). Third, the overlap 
assumption requires that conditional on each possible realization 
of observed confounders, all units have a non-zero probability of 
assignment to each treatment condition6,7. Unfortunately, these 
assumptions are mostly untestable (although in practice, research-
ers conduct a variety of supplementary analyses to assess the cred-
ibility of their assumptions8). Outside large-scale, multi-treatment 
randomized controlled trials, it can be extremely challenging to find 
settings where the relevant assumptions can be justified when there 
are many possible treatments. Meanwhile, owing to what has been 
called the ‘fundamental problem of causal inference’9, where we do 
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Fig. 1 | three ways of generating correlations. Y is the outcome variable, S is the input variable corresponding to the direct cause of Y, V is another input 
variable that may have spurious correlation with Y and Se is a selection variable that affects whether a sample with certain V and S is included in a dataset. 
a, A causal relationship between S and Y. b, A spurious correlation between V and Y arising from a confounder S. c, Selection (Se) based on both V and S 
can lead to spurious correlation between V and (S,Y) in the selected dataset.
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not observe a unit simultaneously treated and untreated, there is a 
missing data problem that makes it difficult to determine the valid-
ity of a causal model.

In general, if the true causal structure can be identified and esti-
mated (that is, if the data generation process can be uncovered), the 
prediction problem can be naturally solved as a side product. But 
to follow this technical path, we have to solve all of the challenges 
for causal inference. Doing so may be impossible in a realistic data-
set. Despite this, we argue that predictive modelling does not need 
to reconstruct the true data-generating process, and the best pre-
dictive model will balance considerations of bias and variance in 
model selection. Thus, the strict goals common to causal inference, 
such as consistent estimation of causal effects, are not required, and 
approximations or improvements may be possible even when we 
do not have the data necessary to fully solve causal inference prob-
lems. Another reason that predictive modelling is easier is that the 
ground truth of the predicted outcome is available, so the correct-
ness of a model can be quantitatively evaluated in held-out test sets. 
Therefore, the challenges for validation arising from the fundamen-
tal problem of causal inference can be avoided.

Thus, we argue here that common ground between machine 
learning and causal inference should be built. The framework of 
stable learning is thus proposed and developed as one approach to 
meeting this goal.

the positioning and development of stable learning
Different from traditional machine learning settings, we do not 
maintain the assumption that the test dataset comes from the same 
distribution as the training data. Given training data De = (Xe, Ye) 
from environment e ∈ E, where Xe are features and Ye is the out-
come variable, stable learning aims to learn a predictive model that 
can achieve uniformly good performance on any possible environ-
ment in E. Of course, there must be some common link across envi-
ronments to make positive progress. In this Perspective, we focus 
on the setting of covariate shift generalization10, where Pe(Y∣X) does 
not vary with e, but Pe(X) varies.

Ref. 11 formalizes the objective for stability based on Average_
Error and Stability_Error, which refer to the mean and standard 
deviation, respectively, of the predictive error over all possible envi-
ronments e ∈ E. Note that the stability here is defined over predic-
tion performance, rather than estimation stability, as in ref. 12. When 
evaluating the stability error of a stable learning model, the ana-
lyst cannot anticipate all possible test environments. Although it is 
often possible to simulate a range of test environments by repeatedly  

creating nonrandom subsamples of test data for the evaluation of 
stability, this introduces a subjective element into the algorithm.

We illustrate the relationships of different learning paradigms in 
Fig. 3. The most common situation is learning with the assump-
tion13 that the training and test data are independent and identically 
distributed (IID). However, the test distribution may shift arbi-
trarily from the training distribution. Transfer learning (or domain 
adaptation) methods14 assume that we have previous knowledge 
of the target distribution that we may encounter in the test phase. 
More recently, the problem of domain generalization has attracted 
increasing attention. These methods mostly require the training data 
to be composed of different environments, and their performances 
highly depend on the diversity of predefined or pre-identified train-
ing environments15.

Compared with the learning paradigms mentioned above, stable 
learning aims for a more realistic problem setting. On the one hand, 
we do not assume the availability of any strong prior on the test dis-
tribution, as in the problems of 2D learning or transfer learning. On 
the other hand, we do not assume the availability of multiple envi-
ronments in training data, as in domain generalization. Meanwhile, 
stable learning poses a higher standard for a model’s generalization 
ability. The learned model should achieve a good performance on 
average in unseen environments. Such a high standard poses more 
challenges for machine learning models and forces us to rethink the 
generalization problem more fundamentally.

Stable learning from the causality perspective. In contrast to 
causal inference, which seeks consistent estimates of the effects of 
treatments and their interactions, stable learning aims to learn the 
mapping between a potentially larger number of treatment variables 
and the outcome. To interpret stable learning from a causality per-
spective, we begin by considering the case where (1) there are no 
effect variables of the outcome variable Y in the system; that is, the 
outcome variable cannot be the cause of any other variables; and (2) 
the above-mentioned three assumptions (unconfoundedness, over-
lap and the stable unit treatment value assumption) are satisfied for 
every pair of (Xi, Y).

The original idea of stable learning is motivated by the literature 
on covariate balancing strategies in causal inference16–18, which are 
used to estimate the average effect of manipulating a single treat-
ment in the presence of many potential confounders. Such methods 
attempt to construct sample weights that balance covariates’ distri-
butions between the treated and the control group, after which the 
correlation between treatment and outcome variable is a consistent 
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Fig. 2 | the physical processes for generating datasets used in predictive modelling, occurring over time. a, Image classification. b, recommendation 
systems. t, time.
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estimate of the causal effect. Although there are other approaches to 
estimating causal effects under unconfoundedness19, this approach 
based on reweighting is particularly useful as a starting point for 
stable prediction. However, existing methods in covariate balanc-
ing are tailored to environments with few treatments. Stable learn-
ing, when viewed through the causal inference lens, poses a more 
ambitious question: if we regard each input variable as the treatment 
iteratively and all remaining input variables as its covariates, does 
a set of sample weights that can realize covariate balancing glob-
ally (that is, global balancing) for whichever input variable acts as 
the treatment exist? If so, the set of sample weights can allow us to 
consistently estimate the causal effect of each input feature on the 
basis of the correlation between the feature and the outcome in the 
reweighted data.

Note that the causal effect estimated by global balancing can 
be interpreted as a direct effect. Consider the causal structure 
Y ← X2 ⟶ X1 ⟶ Y as an example, where for simplicity the fea-
tures are binary and the direct effect of X2 is additive to that of 
X1. When considering X1 as the treatment, X2 plays the role of a 
confounder, so balancing X2 between the X1-treated and X1-control 
groups leads the correlation between X1 and Y to serve as an esti-
mate of the direct effect (equals the average treatment effect, ATE) 
of X1 on Y. When considering X2 as the treatment, X1 plays the 
role of a mediator between X2 and Y20. Balancing X1 between the 
X2-treated and X2-control groups eliminates the effect of X2 on Y 
through the mediator X1, and the resulting correlation between X2 
and Y is the controlled direct effect of X2 on Y; that is, the part that 
is not mediated by X1

21. In linear systems, the direct effect is inde-
pendent of the value at which we hold X1, whereas in nonlinear 
systems, the direct effect depends of the value of X1 after balancing. 
For the goal of prediction when both X2 and X1 are observed, this 
is all we need: we do not require an estimate of the direct effect of 
X2 on X1, which might vary across environments. If we know the 
direct effects of both X1 and X2, with this causal structure, we can 
predict outcomes even if the joint distribution of (X1, X2) changes. 
If the direct effect of X1 depends on the value of X2 (that is, if there 
is an interaction effect in the outcome model), then the average 
(over X2) of the effect of X1 depends on the joint distribution of 
(X1, X2), so it is important to incorporate such interactions in the 
predictive model to achieve stability with respect to the joint dis-
tribution of features.

In pursuit of such a set of sample weights for global balancing, 
we proposed an approach in ref. 11 for removing the correlations 
among the features, so that for each feature, when considering that 
feature as a treatment variable, the covariate distribution is balanced 
between the treated group and the control group. We showed that 
under the law of large numbers and the overlap assumption men-
tioned above, there exists an optimal weight W* that reduces the 
global balancing loss to zero. However, with many features and real-
istic sample sizes, the overlap assumption may fail, and we may not 
have observations associated with every combination of features.

Therefore, a series of algorithms are proposed to optimize the 
sample weights towards global balancing. The process starts with a 
global balancing loss designed for binary input variables22 that can 
be easily plugged into standard learning tasks as a regularizer. It is 
demonstrated that, after integrating the global balancing loss into 
a standard logistic regression model, the learned regression coef-
ficients possess both predictive power and causal implication. To 
relieve the overlap assumption especially with small sample size or 
high-dimensional feature space, an unsupervised representation 
learning module is integrated into the global balancing stage, form-
ing a ‘deep’ version of the original regularizer11. By introducing the 
criterion of continuous variable independence in ref. 23, the regular-
izer of global balancing is extended from binary variables to contin-
uous variables24, which is the common setting in learning scenarios.

By extending the confounder balancing techniques from causal 
inference into machine learning problems, we have seen promis-
ing results in improving the stability of machine learning models. 
But, as mentioned above, we need strict assumptions to make causal 
interpretations of stable learning. This motivated us to explore other 
theoretical support for stable learning.

Stable learning from the statistical learning perspective. Formally 
speaking, the advantages of stable learning are attained by sample 
reweighting. Hence, there arises a natural question: why does sam-
ple reweighting improve the stability of a correlation-based model 
(such as a linear regression)? Can stable learning algorithms still 
improve stability without fully achieving the more ambitious goals 
of causal inference?

To answer these questions, in ref. 25 we investigated the stable 
learning problem in a linear regression framework with model mis-
specification, where the true data-generating process was character-
ized by nonlinearities or interactions not included by the analyst. 
Suppose that:

Y = X⊤ β̄1;p + β̄0 + b(X) + ϵ (1)

The nonlinear term b(X) is constrained to be smaller than a small 
volume δ, and ε is a noise term. If we can correctly estimate the 
coefficients β̄ and use them for prediction, the model may produce 
uniformly good prediction results for any sample, leading to stable 
performances under arbitrary distributions. Therefore, the stability of 
a model can be quantified by model estimation error ||β̂ − β̄||2 where 
β̂ represents the estimated coefficients. We theoretically prove that 
this estimation error is upper bounded by O(δ/λ) where λ is the small-
est eigenvalue of the design matrix, indicating the degree of collinear-
ity among the input variables25. If a misspecified model is used at the 
training stage, the existence of collinearity among input variables can 
inflate a small misspecification error to an arbitrarily large size. Both 
the theorem and empirical results tell us that reducing the collinearity 
among input variables, which is the direct effect of global balancing 
via sample reweighting, is an effective way to improve stability.

Training

Distribution p1

Distribution p1 Acc1 max(Acc1)

max(Avg(Acc1...n) – αVar(Acc1...n))

max(Accn)

Acc2

Accn

Distribution p2

Distribution pn

Model

Testing Objective

IID learning

Stable learning

Transfer learning

Fig. 3 | Comparison of different learning paradigms. We differentiate the learning problems into IID learning, transfer learning and stable learning on the 
basis of the learning objectives with respect to testing distributions. Acc means accuracy, and α is a hyperparameter to tradeoff the average accuracy and 
variance across different distributions.
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It should be noted that the three assumptions required by causal 
inference are not explicitly discussed here. Unconfoundedness is 
not strictly required by stable learning; that is, latent variables are 
allowed. As long as the joint distribution of latent variables with 
observed variables is stable, the stability of a stable learning model 
can be guaranteed; or else, stable learning does not inflate the harm-
fulness of latent variables compared with traditional predictive 
models. Meanwhile, the covariate decorrelation process does not 
depend on the overlap assumption, but a dataset that better satisfies 
the overlap assumption leads to lower estimation variance. The sta-
ble unit treatment value assumption is also not necessary if we focus 
on prediction performance, rather than on causal interpretation. In 
stable learning, the estimation of the causal effects is a means to 
an end, rather than the primary goal. Stable learning thus has the 
potential to optimize the trade-offs involved in balancing bias and 
variance, using the data to make those trade-offs.

Bridging the causality and learning perspectives. Although from 
both viewpoints, stable learning algorithms adopt sample reweight-
ing as the technical way to improve model stability, the notions 
underpinning the idea are different. Here we try to bridge these two 
notions within the regression framework.

As we iteratively regard each input variable as the treatment in 
stable learning, we suppose that all of its confounding covariates are 
contained in the remaining input variables. In the cases of binary 
treatment variables, the learned sample weights eventually make 
the treatment variable independent of the remaining variables. 
Extending this interpretation into global balancing, we conclude 
that the learned global sample weights can make all input variables 
independent of each other. Thereafter, when we conduct regression 
over the weighted samples, each input variable’s regression coeffi-
cient represents its partial effect on the outcome, which is regarded 
as the causal effect26. Similarly, from the view of statistical learning, 
the effect of removing the collinearity among input variables tends 
to make input variables independent. Therefore, making input vari-
ables independent is the common objective of these two perspec-
tives of stable learning, which also provides a common ground for 
causal inference and machine learning.

Furthermore, we prove that making input variables indepen-
dent can help to identify true variables for predictions. Consider 
a data generation process Y = f(S) + ϵ, where X = (S, V) and Y⊥V∣S, 
which covers all the cases shown in Fig. 1, where both confound-
ing and selection bias cases are included. If f(. ) is a nonlinear func-
tion, model misspecification occurs when we use a linear regression 
model such as ordinary least squares (OLS), resulting in non-zero 
coefficients on V. With the sample weights learned from stable 
learning methods such as sample reweighted decorrelation operator 
(SRDO)25, weighted OLS can guarantee zero coefficients on V in the 
learned function, which means only the variables (S) are used for 
prediction, so that prediction is stable even when the joint distribu-
tion of (S, V) changes10.

The causal inference framework provides a fundamental view of 
understanding the stability of a learning model like regression. Still, 
the causal interpretations of regression coefficients can only be jus-
tified by relying on much stricter assumptions than are needed for 
predictive inference27. Comparatively, the learning perspective can 
help to weaken these assumptions for better performance in more 
complicated tasks. Therefore, as one aspect of the common ground 
between causal inference and machine learning, stable learning can 
extend in the theoretical foundation and practical predictive power.

implications of explainability and fairness
In real applications, the stability, explainability and fairness prop-
erties are often jointly required. As these properties are inherently 
related to causality, causality-inspired stable learning may poten-
tially provide implications of explainability and fairness.

A recent article2 appeals to the community to stop explaining 
black-box models and use inherently interpretable models instead. 
As human models are often based on causality with the ultimate 
aim of understanding the underlying mechanisms28, it is natural to 
incorporate causality to form a common ground for human and pre-
dictive models. Therefore, in the Explainable AI project sponsored 
by Defense Advanced Research Projects Agency (DARPA), causal 
models are regarded as a prominent technical path29. On the other 
side, in the study of explainable AI, partial dependence plots are 
commonly employed as a diagnostic technique to generate insights 
into the importance of specific features in the model’s predictions30. 
Stable learning models are consistent with the notion of causality 
and evaluation metrics of explainability such as partial dependence 
plots, naturally guaranteeing their explainability22,31.

With respect to fairness, mainstream studies propose various 
metrics for measuring group fairness32,33 and individual fairness32,34. 
In contrast to the existing metrics that are typically applied directly 
to observational data, causal inference may provide a generative 
angle to frame fairness problem35. In stable learning, under rea-
sonable assumptions, we eventually exploit direct causal variables 
to predict the outcome, which can avoid the fairness issues caused 
by spurious correlations36. Recently, researchers established a close 
connection between fairness problems and stability (or robustness) 
problems37,38, making stable learning the preferred candidate for 
addressing fairness problems.

Conclusion
The stability, explainability and fairness problems of machine learn-
ing algorithms are urgently needed to be addressed if we expect these 
algorithms to be widely deployed. However, most studies on these 
topics try to rectify today’s models (for example, deep learning mod-
els), which are inherently divergent from these goals. We argue that 
these problems are fundamental limitations of today’s learning para-
digm that need to be addressed radically. The whole question of ‘what 
should the basis for prediction, correlation versus causality be?’ needs 
to be rescrutinized, despite the long historical debate. The recent 
progress of causal inference—especially in observation studies—can 
provide more insights into, and theoretical support for, machine 
learning. Stable learning is presented as an attempt to find common 
ground between these two directions. How to reasonably loosen strict 
assumptions to matchapplication scenarios ‘in the wild’, and make 
machine learning more trustworthy without sacrificing predictive 
power, are crucial questions for stable learning to address in the future.
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