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Abstract

Although revisiting the discoveries and implications of genetic variations using phased genomics is critical, such efforts are still
lacking. Somatic mutations represent a crucial source of genetic diversity for breeding and are especially remarkable in heterozygous
perennial and asexual crops. In this study, we focused on a diploid sweet orange (Citrus sinensis) and constructed a haplotype-resolved
genome using high fidelity (HiFi) reads, which revealed 10.6% new sequences. Based on the phased genome, we elucidate significant
genetic admixtures and haplotype differences. We developed a somatic detection strategy that reveals hidden somatic mutations
overlooked in a single reference genome. We generated a phased somatic variation map by combining high-depth whole-genome
sequencing (WGS) data from 87 sweet orange somatic varieties. Notably, we found twice as many somatic mutations relative to a single
reference genome. Using these hidden somatic mutations, we separated sweet oranges into seven major clades and provide insight
into unprecedented genetic mosaicism and strong positive selection. Furthermore, these phased genomics data indicate that genomic
heterozygous variations contribute to allele-specific expression during fruit development. By integrating allelic expression differences
and somatic mutations, we identified a somatic mutation that induces increases in fruit size. Applications of phased genomics will lead
to powerful approaches for discovering genetic variations and uncovering their effects in highly heterozygous plants. Our data provide
insight into the hidden somatic mutation landscape in the sweet orange genome, which will facilitate citrus breeding.

Introduction
Somatic mutations, such as single nucleotide polymorphisms
(SNPs), insertions/deletions (InDels), and structural variations

(SVs), are common and can significantly impact perennial
plants and asexual crops [1–3]. Most somatic mutations create
discord between homologous chromosomes and occur in a

heterozygous state [4]. Somatic mutations that appear in the
germline can be inherited during sexual reproduction and can be

maintained in a heterozygous state during asexual propagation

[5]. Compared to sexual reproduction, asexual propagation
techniques are more likely to produce heteroplasmy and chimeric

plants due to the accumulation of mutations over generations
[6]. In addition, propagation from meristematic tissues may

produce chimeras containing genetically distinct cell lineages [7].
Heteroplasmy and chimerism give rise to phenotypic variations
and therefore, provide opportunities to identify clones with
advantageous agronomic traits [8–10]. This phenomenon is often
observed in asexually crops and facilitates the production of
elite somatic varieties [11]. Therefore, somatic mutations provide

significant opportunities for crop breeding. However, investiga-
tions based on the single reference genome did not produce
an in-depth understanding of somatic mutations in diploid
genomes [12, 13].

Somatic mutations are overlooked in highly heterozygous
genomes for two possible reasons. First, a single reference-based
analysis may mask unaligned regions and thus, lead to partially
ignore of somatic variations [14]. Second, high heterozygosity
affects the identification of ancestral and derived genotypes
[15]. In addition, genome heterozygosity can significantly impact
the generation of somatic mutations in diploid crops [16–18].
Mutation rates tend to increase in genomic regions that contain
more heterozygous sites [3, 16, 17]. The hybridization background
can also contribute to high somatic mutation rates, such as in
sweet orange and peach [3, 16]. Recent advancements in long-read
sequencing technology have played a pivotal role in uncovering
haplotype sequences and heterozygous variations in diploid
crop genomes [19, 20]. Indeed, phase-resolved assemblies have
become indispensable for producing comprehensive panels for
investigating the accumulation of somatic mutations in crops [21].
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Somatic mutations in a diploid genetic model are remarkably
consistent with the influence of allelic features [22, 23]. Typically,
somatic mutations lead to heterozygous variations in individuals
[24]. If these variations affect regulatory element sequences or
coding regions, they may influence the function of one allele
and might lead to substantial changes in allele-specific expres-
sion [25, 26]. For example, a heterozygous somatic SNP in the
coding region of a STAY-GREEN (SGR) allele reduced the capacity
for chlorophyll degradation and gave rise to a brown flavedo
phenotype in navel orange fruit [27]. Sometimes, SVs can cause
large-scale perturbations of cis-regulatory regions and, therefore,
may change gene expression and thus, induce phenotypes [10,
28, 29]. Long terminal repeat (LTR) retrotransposons can increase
the allelic expression in response to the cold and lead to the
accumulation of anthocyanins in blood orange varieties [10]. In
addition, DNA methylation in the promoter region of the MdMYB1
gene plays an important role in regulating expression and affects
the color of apple fruit [30]. Although somatic variations can
influence the function and expression patterns of linked alleles,
these characteristics have been poorly studied in the context of
phase-resolved crop genomes.

Citrus is one of the most economically significant fruit crops
in the world with enormous genetic diversity among the different
species, which include mandarins (Citrus reticulata, Citrus unishu,
Citrus ryukyuensis, Citrus depressa and Citrus tachibana), pummelo
(Citrus maxima), citron (Citrus medica), lemon (Citrus limon), grape-
fruit (Citrus paradisi), and sweet orange (Citrus sinensis) [31]. Pum-
melo and mandarin diverged 6–8 million years ago [32]. Sweet
orange is a hybrid species that possibly arose from an interspe-
cific hybridization between pummelo and mandarin thousands of
years ago [33]. The hybrid genetic background reshaped important
agronomic traits in sweet orange, such as fruit size and flavor
[34]. Because of apomixis, a type of asexual reproduction, and
grafting (i.e., clonal propagation), the genetic differentiation of
the sweet orange genome was frozen as it spread globally [3,
35]. Somatic breeding techniques are influential in sweet orange
[36]. For example, sweet orange varieties descended from an
early somatic clone originating in South China, the levels of acid
content gradually decreased, which led to the present almost
acidless varieties [3]. A chromosome-level phased diploid lemon
genome has recently been assembled utilizing Pacific Biosciences
(PacBio) high-fidelity (HiFi) reads [37]. This achievement follows
the publication of a haplotype-resolved reference genome from
Valencia sweet orange (C. sinensis cv. Valencia), which is based
on continuous long read (CLR) sequencing [13]. Here, we used
sweet orange as a genetic system to investigate hidden somatic
mutations in highly heterozygous genomes. We assembled a high-
quality phase-resolved sweet orange genome using a combina-
tion of HiFi reads, ONT long reads, and Hi-C reads. We investi-
gated the genetic admixtures and haplotype differences based
on the phased genome. Furthermore, we developed a strategy
aiming to capture hidden somatic mutations. The whole-genome
sequencing (WGS) data from 87 sweet orange somatic varieties
were collected to generate a phased somatic variation map. By
combining allele-specific expression and hidden somatic muta-
tions, we demonstrate that somatic mutations influence fruit
development in sweet orange. Our study answered four ques-
tions: (i) How many new sequences are apparent in the phased
genome compared to the previous chimeric consensus reference
genome, SWOv3 [3]? (ii) How can we use phased genomics to
identify hidden somatic mutations? Furthermore, can identifying
these somatic mutations contribute to sweet orange breeding?
(iii) What is the genome-wide variation in expression among

alleles in a highly heterozygous background? (iv) Are gene expres-
sion differences influenced by alleles containing somatic muta-
tions?

Results
Haplotype-resolved assembly of diploid sweet
orange
We de novo assembled a high-quality haplotype-resolved genome
of Bingtang sweet orange, a popular variety with a characteristic
set of somatic lineages that originated in South China. A total
of 25.2 Gb of HiFi reads (80-fold coverage) were generated using
the PacBio Circular Consensus Sequencing (CCS) platform. We
also sequenced 29.2 Gb of nanopore ultralong sequence reads
(N50 = 53.4 Kb) (Table S1, see online supplementary material).
These reads were combined for the assembly of the primary
contigs. Subsequently, the 100-fold coverage of Hi-C reads were
used to phase the haplotype (Fig. S1, see online supplemen-
tary material). As a result, two haplotypes were assembled with
a length of 320.9 Mb and 305.7 Mb, contig N50 = 20.6 Mb and
N50 = 16.4 Mb, respectively (Fig. S2, see online supplementary
material). A Benchmarking Universal Single-Copy Orthologs (BUS-
COs) analysis provided evidence for more than 98.5% complete-
ness for both haplotypes (Tables S2 and S3, see online supple-
mentary material). Additionally, the transposable element (TE)
sequences accounted for 46.17% and 44.77% of the two haplo-
types, respectively (Table S4, see online supplementary material).
Based on the genome annotation, we predicted 30 908 protein-
coding genes in one haplotype (Haplotype A) and 29 913 protein-
coding genes in the other haplotype (Haplotype B). We performed
a collinearity analysis for the assembled haplotypes with the pre-
viously published sweet orange genome SWOv3 [3] and identified
16.8 Mb and 19.4 Mb of new sequences that account for 10.6% of
the increase in genome sequence (Table S5 and Fig. S3, see online
supplementary material).

We found that the two haplotypes are composed of different
proportions of pummelo and mandarin, with mixtures occurring
in different patterns among the nine chromosomes (Fig. 1A). For
example, 97.4% and 14.07% of the sequences in chromosome
1 from the two haplotypes were from the mandarin genome,
respectively (Table S6, see online supplementary material). We
characterized the sequence divergence of the two haplotypes
using unique k-mers (k = 21 and k = 61) and guide read map-
ping [38]. Our findings indicate significant k-mers ratios between
homologous chromosomes in sweet orange that is similar to the
comparison of mandarin and pummelo (Fig. 1B; Fig. S4, see online
supplementary material). In addition, we collected the CHIP-
seq assay data generated using the anti-MaCENH3 protein and
detected eight centromeric regions from mandarin in haplotype
A and four in haplotype B (Fig. S5, see online supplementary
material).

To evaluate the genome heterozygosity based on the two hap-
lotypes, we constructed a heterozygous variation map using the
whole-genome alignment and reads mapping (see ‘Materials and
methods’). A total of 4.12 million SNPs and 44 731 SVs (>50 bp)
were identified (Fig. S6, see online supplementary material). The
whole genome distribution of SNPs and SVs were significantly
correlated (R = 0.87, P value <2.2e-16) (Fig. S7, see online supple-
mentary material). In addition, we identified 1723 deletions that
were associated with 2722 haplotype specific genes. For example,
an approximately 180-kb insertion/deletion was found to include
three genes encoding proteins containing the NB-ARC domain
(HA1g13750, HA1g13760, and HA1g13780) (Fig. 1C; Fig. S8, see
online supplementary material). These large haplotype-specific
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Figure 1. Pronounced haplotype differences in sweet orange revealed by a diploid assembly. (A) Genetic admixtures of pummelo and mandarin in the
diploid sweet orange genome detected using 50-kb non-overlapping windows. The percentages from pummelo and mandarin are indicated on the
y-axis and highlighted with different colors. (B) Comparison of unique kmers between two haplotypes (A_B) and between mandarin and pummelo
(M_P). k = 21 and 61. (C) A 180-kb haplotype-specific region on chromosome 1 revealed by syntenic analysis.

sequences demonstrate the limitations of using a single reference
genome to study a highly heterozygous genome, especially for
detecting somatic mutations.

Hidden somatic mutations revealed by a
haplotype-based approach
We developed a haplotype-based method by integrating the
two haplotypes into a complete reference genome to perform
whole-genome sequence read mapping and to identify somatic
mutations (see ‘Materials and methods’; Fig. S9, see online
supplementary material). To evaluate the performance of the
haplotype-based method, we generated simulated short reads
based on this complete reference genome. Briefly, we introduced
somatic mutations and simulated short read datasets at 10
different levels of coverage (ranging from 5-fold to 50-fold)
to validate the power of the haplotype-based approach. We
then detected somatic variations for each simulated dataset
and compared results with the single reference genome-based
method. We found that genotype information is important to
include as part of the single reference-based mapping strategy
for representing two copies of homologous alleles. The haplotype-
based method focuses more on position-specific variations
and therefore, detects somatic mutations by inference based
on the mutations detected in sequence reads (Fig. S10, see
online supplementary material). In particular, we found a clear
representation without polymorphisms using haplotype-based
mapping, and we found approximately 18 heterozygous SNPs
per kb using single reference mapping (Fig. S11, see online
supplementary material).

We validated the method using simulated reads containing
different variations. Our analysis showed that although SNPs and

InDels were reliably detected, SVs were difficult to identify. We
focused on the somatic SNPs and InDels and then performed
an F-measure to calculate the recall ratio. We found that the
haplotype-based method required higher coverage (∼35×) to
reach equilibrium but achieved a greater recall ratio (72%)
compared to the single reference method (Fig. 2A). We were able
to detect more somatic mutations as read coverage increased
(≤35-fold) (Fig. S12, see online supplementary material). Although
75% of somatic mutations were identified using the single
reference-based mapping strategy, we found that only 54% of
the genotypes were correct (Fig. S13, see online supplementary
material). Furthermore, we collected whole-genome short reads
from 87 somatic accessions of sweet orange, including nine
newly sequenced samples, with an average coverage of 45-
fold (Table S7, , see online supplementary material). Using the
haplotype-based mapping method, we inferred an allelic somatic
mutation map, including 21 204 SNPs and 2572 InDels, which is
approximately two-fold larger than the somatic mutation map
produced using the single reference-based mapping method
(Fig. 2B; Fig. S14, see online supplementary material). The genome
length is expected to be positively related with the accumulation
of somatic mutations [39]. We found similar numbers of somatic
variations for both haplotypes and examined the significance of
the correlation between the number of variants per-chromosome
and chromosome length (R = 0.90, P value = 3.6e-07) (Fig. 2C).

Simple bifurcating trees are insufficient for modeling the
genetic relationships of somatic varieties in sweet oranges
due to the long-term clonal propagation and global spread.
Therefore, we constructed a network phylogenetic tree to infer
distinct somatic lineages using the somatic variations that
we identified (Fig. 2D). We found seven major clades that are
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Figure 2. Detection and characterization of somatic mutations in sweet orange. (A) Evaluation of somatic mutations using a single-reference genome
and haplotype-based mapping methods. The percentage of detected mutations are indicated on the y-axis. The simulated reads with different
amounts of coverage are indicated on the x-axis. (B) Statistics for somatic variations in the sweet orange genome calculated using a single-reference
genome and haplotype-based mapping methods. (C) Correlations between genome size and somatic variations in two haplotypes. (D) Network
phylogeny analysis for somatic variations in the 87 accessions from the sweet orange population. (E) Annotation of somatic variations with high allele
frequencies (>60 accessions). (F) Normalized dN/dS in a somatic population of sweet orange. The distribution of neutral somatic mutations was
estimated in simulations.

consistent with previous work indicating that acidity was under
selection across different clades [3]. Interestingly, we found that
clades were subdivided into groups with very large distances
between internal branches. To assess the genetic mosaicism
in the sweet orange genome, we estimated the individual
frequency spectrum using eight accessions from Earlier Clade
I as the outgroup (Fig. S15, see online supplementary material).
Accessions from this clade produced fruit with the highest acid
content and probably represents the oldest lineage originating
from South China [3]. This analysis revealed that 47.8% of
somatic variations occurred at a low frequency (<3 samples
called). Furthermore, we identified 877 lineage-specific somatic
mutations within the Bingtang orange clade, associated with the
longest branch of the reticulated phylogenetic tree (Fig. 2D; and
Table S8, see online supplementary material). We hypothesized
that few reversion mutations occurred at each site and that
the high frequency of somatic variations are associated with
selection during breeding. Annotating somatic variations with
high allele frequencies—at least 60 samples called—revealed
that 51% were nonsynonymous mutations, 10% of which were
deleterious and 12% were loss-of-function (LoF) alleles (Fig. 2E;
Table S9, see online supplementary material). Nucleotide substi-
tution rates may vary depending on substitution direction [40]. We
introduced the Jukes-Cantor model for correction and calculated

the normalized ratio of non-synonymous to synonymous substi-
tutions (dN/dS) [41,42]. We found a significantly higher genome-
wide dN/dS value (2.24 ± 0.11) in sweet oranges compared to
the neutral simulation (Fig. 2F; Table S10, see online supple-
mentary material). The heat shock transcription factor (Hsf)
gene family is reported to participate in fruit development and
maturation, in particular the accumulation of citrate content
in citrus [43]. We identified a heterozygous stop-gain somatic
mutation in the HsfB4 gene that disrupts a protein domain and
that is prevalent in modern cultivars, based on the mutation
frequency spectrum. Expression analysis confirmed that the
expression of the HsfB4 gene is elevated during the early stages
of fruit development in sweet orange (Fig. S16, , see online
supplementary material).

Differential expression of alleles during fruit
development
Phased genomics provides critical information, such as informa-
tion on quantitative differences in expression of different alle-
les. Therefore, we constructed an allele-specific expression (ASE)
dataset using expression data from sweet orange fruit at five
developmental stages (90, 120, 150, 180, and 210 d after bloom-
ing) (Table S11 and Fig. S17, see online supplementary mate-
rial) [44]. The heterozygous SNPs were used to build the ASE
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Figure 3. Allele-specific expression during fruit development in sweet orange. (A) Distribution of fold changes in expression. The fold change in
expression for the allele expressed at relatively high levels compared to the allele expressed at relatively low levels is indicated on the x-axis. The
threshold for extremely different fold change (EASE) genes is highlighted. (B) Correlation analysis between allele specific gene expression and
heterozygous variations. The proportion was calculated based on the number of differentially expressed alleles and the corresponding number of
genes in each 500-kb window. (C) Three expression patterns (clusters I, II, and III) and module-trait relationships from a WGCNA. The seven modules
are indicated on the y-axis. The asterisks indicate corrected P values <0.05.

index using haplotype A as the reference genome. We confirmed
allelic expression differences (FDR-adjusted P value <0.05) during
at least one stage of fruit development for 7959 genes (24.8%)
out of the 16 785 biallelic genes (i.e., genes with coding regions
containing at least one heterozygous SNP) (Fig. 3A). We found a
significant correlation (P value <2.2e-16) between the enrichment
of ASE genes and heterozygous variations, and this correlation
was slightly stronger for SVs than for SNPs (Fig. 3B). Furthermore,
a greater than two-fold difference in expression was observed
for 1418 genes (FDR-adjusted P value <0.001), which we refer to
as extreme allele-specific expression (EASE) genes (Fig. S18, see
online supplementary material). We found that 756 (53.3%) of
EASE genes were associated with heterozygous SVs in the putative
promoter region (Table S12, see online supplementary material).
We identified that the highly expressed allele of CCD4b from
haplotype B harbored two miniature inverted-repeat transposable
element (MITE) insertions (206 bp and 158 bp) in the promoter
region and that transposable elements were not inserted into the
weakly expressed allele from haplotype A (Fig. S19, see online sup-
plementary material). The 158-bp MITE was previously reported to
induce increases in gene expression [45].

To understand the dynamics of allele-specific expression in
fruit, we quantified the expression of EASE genes during five
stages of development and found three distinct expression pat-
terns (clusters I, II, and III) using a weighted gene co-expression
network analysis (WGCNA) (Fig. 3C; Figs S20 and S21, see online
supplementary material). We found increased expression for only
one allele in 567 of the 1418 EASE genes (40.0%, from green and
turquoise blocks; FDR-adjusted P value <0.05) (Table S13, see
online supplementary material). At the same time, the expres-
sion patterns of the two alleles showed the opposite expression
pattern, which may affect the analysis of expression differences
in a single reference genome. Collectively, our analyses described

a complete picture of allelic expression in the highly heterozygous
sweet orange genome.

Capturing fruit size-related somatic mutations
Phased genomics is essential for discovering key variants and
has implications for sweet orange breeding. We identified genes
that regulate sweet orange fruit size using a set of somatic vari-
eties with extremely tight genetic distance (Fig. S22, see online
supplementary material). Fruit size differences are prominent
among two somatic varieties with significant differences that
are apparent at 70 d after blooming (P value <0.05, Student’s
t test). The flowers and leaves are not morphologically distinct
(Fig. 4A and B; Figs S23 and S24, see online supplementary mate-
rial). We collected RNA-seq data from the fruit produced by both
wild type (BT_2) and the large-fruit mutant (BT_5) grown in the
same orchard at 70, 120, and 170 d after blooming (Table S14 and
Fig. S25, see online supplementary material). Principal component
analysis (PCA) indicated similar gene expression patterns in the
mutant varieties and wild type during these three developmen-
tal stages (Fig. 4C). Using standard differentially expressed gene
(DEG) analyses, we found that 2287, 1194, and 294 genes were dif-
ferentially expressed in the fruit produced by BT_2 and BT_5 dur-
ing three stages of development (FDR-adjusted P value <0.05) (Fig.
S26, see online supplementary material). Multiple biological pro-
cesses were influenced by the final fruit size and weight [46]. We
annotated 113 genes that might influence fruit size and weight,
including genes homologous to previous identified quantitative
trait loci (QTLs) [47] that contribute to hormone signaling and
the response to environmental signals (Table S15, see online sup-
plementary material). Our results showed that 17 genes were
differentially expressed during at least one developmental stage
including two FW genes (FW2.1 and FW2.2) and three EXP genes
(EXP10.1, EXP10.2, and EXP3) (Fig. 4D).
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Figure 4. Integrative analysis of candidate genetic factors affecting fruit size in sweet orange. (A) Phenotypic differences between BT_2 and BT_5 fruit.
Scale bar, 2 cm. (B) Cross sectional diameters (mm) of BT_2 and BT_5 fruit at 11 developmental stages. ∗P value <0.05; ∗∗P value <0.01 (Student’s t
test). (C) Principal component analysis (PCA) of transcriptomes from BT_2 and BT_5 fruit at 70, 120, and 170 DAB. (D) Heatmap of expression levels for
17 differentially expressed fruit size and cell expansion-related genes. Genes were expressed at significantly different levels during at least one
developmental period. (E) Expression of different EXP10.2 (HA6g01160) alleles. Counts for the expressed reads from different alleles are indicated on
the y-axis. (F) Somatic variations located in the gene region or in the 3-kb upstream and downstream regions. (G) Validation of somatic mutations in
two alleles of FS8.1 using Sanger sequencing. (H) Expression of somatic mutation related alleles from the FS8.1 gene (haplotype B). Counts for allelic
expressed reads are indicated on the y-axis.

Based on the phased genome, we focused on allelic somatic

variations and the linked allelic expression differences. We found

that 1016 (31.7%) of the DEGs were also EASE genes. In particular,
EXP10.2 (HA6g01160) and FW2.2 (HA2g13890) exhibited relatively
low expression from one haplotype, while stage-specific expres-

sion differences were determined by the highly expressed alleles
(Fig. 4E; Fig. S27, see online supplementary material). If somatic
mutations contribute to differences in fruit size, mutant alleles

that increase fruit size should be present in the three large-
fruit varieties (BT_5, BT_6, and BT_7) but absent in the other

varieties. We identified 14 specific heterozygous somatic varia-
tions in three large fruit varieties. Four variations of these were

specifically located in the gene body or the putative promoter
region (i.e., the 3-kb region upstream of the transcription start site)

(Fig. 4F; Table S16. see online supplementary material). HB5g38560
is homologous to AtSRG and the FS8.1 locus from tomato [48].

A somatic SNP was identified in the first exon of HB5g38560
(+6 bp) in one haplotype by sequencing polymerase chain reaction
(PCR) products (Fig. 4G). The allele-specific expression analysis
indicated that the mutant allele of HB5g38560 was differentially
expressed at both 70 and 120 d after blooming and therefore
possibly contributes to the development of the larger fruit size.
This expression pattern was not captured using a standard DEG
analysis (Fig. 4H). Collectively, our analyses highlight the power
of using phased genomics to study the expression of somatic
mutation-alleles in the sweet orange.

Discussion
In this study, we reported a high-quality phase-resolved sweet
orange genome and developed a haplotype-based mapping strat-
egy for detecting hidden somatic mutations. The allelic features
of somatic mutations and gene expression patterns were analysed
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together to investigate genetic factors related to sweet orange
fruit size. Overall, our analyses provide a deep understanding
of significant genetic variations in sweet orange and, thus, will
facilitate the breeding of asexual and perennial crops.

Applying phased genomics to discover genetic
variations in crops
Haplotype-resolved genome assemblies offer a more compre-
hensive representation of haplotype divergence in crop genomes
[49]. Recent studies have enabled phase-resolved genomes in
clonally propagated crops such as kiwifruit, grapevine, and
potato [20, 21, 50]. One application of these assemblies is the
generation of the pangenome, which encompass sequences
missing from linear reference genomes [51–53]. Here, we
demonstrate the importance of studying haplotype sequences
in somatic populations. We provide a detailed profile of somatic
variations and allele-specific expression by discerning haplotypes.
Although previous studies have examined somatic mutations
based on reference genomes in peach, oak, and poplar trees
[5, 6, 54], utilizing haplotype resolution for somatic mutation
detection may reveal a greater number of mutations than initially
anticipated.

Empirical evidence is consistent with clonally propagated crops
tending to have highly heterozygous genomes [55]. Therefore, it is
crucial to understand allelic signatures and somatic mutations
within the context of heterozygous genomes and in particular,
somatic mutation rates influenced by the genomic heterozygosity
[16]. Using phased genomics to study genetic variation could
reveal new insights and broadly impact the production of asexual
and perennial crops. Phased genome sequencing of diverse clones
will (i) lead to the discovery of somatic mutations and genes that
influence important traits and (ii) help to design markers linked
to causal genes for genomic selection.

Hidden somatic mutations in sweet orange
Our haplotype-resolved genome analysis provides insight into
hidden somatic variations in sweet orange. As a result of the
simulations, we found that single-reference mapping can iden-
tify millions of heterozygous loci. Integrating information from
both haplotypes was the first step for characterizing the map-
ping of mutated reads and significantly reduced the number
of heterozygous loci and associated mistakes in defining geno-
types. Our findings revealed that the haplotype-based mapping
strategy identifies twice as many somatic mutations than were
identified in the single reference genome (Fig. 2). Although the
haplotype-based strategy facilitates the identification of somatic
mutations, three limitations remain: (i) assemblies are incomplete
in complex genomic regions; (ii) mapping errors may increase in
duplicated regions, especially when the two haplotypes are inte-
grated; and (iii) the haplotype-based method requires more read
coverage.

The frequency of somatic mutation in sweet orange reveals the
inheritance pattern during clonal propagation [12, 56]. Somatic
mutations can accumulate in specific cell lineages as cells
undergo division during development [57]. Breeders maintain
genotypes using asexual reproduction methods, such as grafting,
that potentially contribute to the prevalence of lineage-specific
somatic mutations [54, 58]. Our findings highlight the importance
of these mutations in defining the major groups of sweet oranges.
Additionally, our analysis indicates that somatic mutations in
the sweet orange genome were subjected to positive selection,
possibly due to the intense artificial selection related to the
desired agronomic traits during breeding. However, it is difficult

to exclude the influence of somatic genetic drift, which can affect
the accumulation of lineage-specific mutations [59].

The integration of haplotype sequences, somatic mutations
and differential expression analysis of mutant alleles is a
powerful approach. Due to high levels of heterozygosity, there
are many EASE genes in the sweet orange genome. We found
somatic mutations may influence important traits, such as fruit
size, by affecting one of the alleles. Evidence for such effects
comes from comparisons of allele-specific expression levels in
large-mutant and wild-type fruits from sweet oranges (Fig. 4).
Our analysis focused on the expression of alleles containing
somatic mutations. Sometimes these differences in expression
cannot be captured by a standard analysis of DEGs. Identifying
the genes that affect fruit size is not straightforward because
the signals that determine fruit size can act during ovary
development [60]. This study did not investigate other genetic
factors, such as SVs or epigenetic factors [61] but focused on
a different level of regulation by accurately quantifying the
relationship between somatic mutations and allele-specific
expression.

Imbalanced expression of the sweet orange
genome
The heterozygous SVs might influence the regulatory elements
that are critical for the expression of adjacent genes [29]. There-
fore, haplotype differences in diploids have the potential to induce
imbalances in the expression of different alleles of the same
gene [62]. Indeed, heterozygous SVs were linked to the differ-
ential expression of two alleles [63]. For example, the insertion
of a MITE element in a highly expressed allele of the CitRWP
gene was found to induce the initiation of nucellar embryony
in mandarin [28, 35]. Here, we aimed to characterize the allele-
specific expression associated with SVs in the context of fruit
development in sweet orange. Our findings revealed that 53.3% of
differentially expressed alleles were associated with heterozygous
SVs in the promoter or gene body. Furthermore, asynchronous
expression patterns were observed between the two alleles of
EASE genes throughout fruit development (Fig. 3). This compre-
hensive examination provided a holistic understanding of gene
expression dynamics in sweet orange. Allele-specific regulation
allows for differential gene regulation based on the specific alleles
present in sweet orange during fruit development. We propose
that this regulation provides alleles that confer adaptability to
different environmental or genomic contexts. Sweet oranges orig-
inated from hybridization between pummelos and mandarins.
In contrast to sweet orange, the different expression of alleles
may not be as dramatic in pummelo. More haplotype-resolved
genomes of different citrus species will provide a more complete
picture of variation.

Some genetic factors related to fruit size
Fruit size is a complex agronomic trait influenced by a multi-
tude of genes. The hybrid genetic background of sweet orange
contributes to an intricate network of interactions that influence
fruit development [34]. Previous studies have indicated that signal
transduction in the ovule during the early stages of development
plays a crucial role in determining cell number and expansion,
ultimately influencing fruit development and size at the mature
stage [64, 65]. Genes involved in cell division and the cell cycle,
such as CYCD3, HISTONE H4, and WEE1, regulate fruit size in
tomatoes by controlling cell numbers [66–68]. On the other hand,
candidate genes like EXPA2, α-EXPANSIN, and AQUAPORIN, which
are involved in cell wall loosening and water uptake, determine
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the extent of cell expansion [69–71]. In our study, we examined a
set of genes containing somatic mutations (Fig. 2). We observed
differential expression of these genes related to cell number
and expansion. Notably, three candidate genes involved in cell
expansion (EXP3, EXP10.1, and EXP10.2) exhibited distinct expres-
sion patterns, particularly during an earlier developmental stage,
around 70 d after blooming. Additionally, hormone biosynthesis
and signaling pathways affect fruit size [72]. For instance, genes
involved in the response to auxin, such as IAA2 and ARF4, impact
fruit size. Transcription factors are also likely to regulate multiple
genes involved in development, cell division, and hormone signal-
ing [73]. Our analysis provides evidence that the somatic muta-
tions we studied had the greatest influence on gene expression
during the early stages of fruit development (Fig. 4). Therefore, it
is important to consider that key genes affecting fruit size may
act at even earlier stages.

Materials and methods
Plant material and whole-genome sequencing
The haplotype-resolved genome was constructed from the Bing-
tang sweet orange lineage, namely Jinhong, cultivated at the Insti-
tute of Horticultural Research, Hunan Academy of Agricultural
Sciences. Total DNA from Jinhong sweet orange was isolated from
young leaves for sequencing. All plant material was immediately
frozen with liquid nitrogen and ground into a powder. Subse-
quently, the high molecular weight genomic DNA (gDNA) was
extracted following a standard protocol [74]. The concentration
and quality of the stock DNA preparations were determined with
a NanoDrop 1000 spectrophotometer (Thermo Scientific, USA)
and using pulsed-field gel electrophoresis. The newly sequenced
HiFi reads from Jinhong sweet orange were generated using the
circular consensus sequencing (CCS) strategy and the Pacific Bio-
sciences Sequel II platform. At the same time, the gDNA was used
to construct Oxford Nanopore sequencing 50-kb libraries and
sequenced using a GridION platform. The genomic chromosome
status and associated DNA fragments were captured to construct
Hi-C libraries using the restriction enzyme MboI, following a stan-
dard Hi-C library preparation protocol. Approximately 47.9 Gb
of Hi-C reads were generated using the Illumina NovaSeq 6000
platform.

We newly sequenced nine sweet orange somatic accessions
including eight from the Bingtang clade and one from the Navel
clade (BT_8). There are three accessions (BT_5, BT_6, and BT_7)
that produced fruit with larger sizes from the Bingtang clade.
The gDNA from nine samples were collected and subjected to
whole genome sequencing with an average of 35-fold coverage
using the Illumina NovaSeq 6000 platform, respectively. Addi-
tionally, short reads from the previously published 78 somatic
mutant accessions with more than 35-fold coverage were col-
lected [3]. These reads were combined to construct the somatic
variation map.

We collected RNA-seq data from Newhall navel orange fruit, a
somatic lineage of Jinhong sweet orange, at five developmental
stages (90, 120, 150, 180, and 210 d after blooming) with three
biological replicates [44]. These reads were used for investigating
allele specific expression during fruit development.

To characterize gene expression in somatic accessions that
produce fruit with different sizes, we generated new RNA-seq
libraries from the fruit of an accession that produces fruit with
a normal size (BT_2) at three representative stages (70, 120, and
170 d after blooming) and fruit from an accession (BT_5) that
produces large fruit at three representative stages (70, 120, and

170 d after blooming). Each data point was represented with three
biological replicates.

Genome assembly and annotation
The HiFi reads and Hi-C reads were combined to generate
the primary haplotype-assembly using the Hifiasm program
(v0.16) [75] with default parameters. The separated haplotypes
were generated and stored in FASTA format. Subsequently,
the haplotype specific kmers were inferred using the Meryl
program (v1.4) [76] (https://github.com/marbl/meryl). These
haplotype specific kmers, HiFi reads, and Nanopore reads were
integrated to fill gaps and to generate the final haplotypes
using the Verkko program (v1.3.1) [77]. The assemblies from
two haplotypes were scaffolded and ordered using the RagTag
(v2.1.0) [78] program based on the SWOv3 reference genome
[3] (http://citrus.hzau.edu.cn/download.php). Furthermore, each
haplotype was corrected with a hic contact map using the 3D
de novo assembly (3D-DNA) pipeline (v201008) [79]. The Hi-C
format file was visualized using the Juicebox program (v2.16.00)
[80] and misaligned contigs were manually curated. Finally, the
BUSCOs program (v5.4.4) [81] was used to evaluate the assembly
quality.

We annotated the gene structures from haplotypes based on
expression evidence and ab initio predictions. The RNA-seq data
were mapped to the two haplotypes using the STAR program
(v2.7.10) [82]. Next, the gene structure models were trained based
on expression read alignments using Augustus (v3.5.0) [83] and
SNAP (https://github.com/KorfLab/SNAP). Finally, homologous
proteins were utilized to generate gene structures for each
haplotype using two rounds of Maker (v3.01.03) [84]. To validate
the gene annotation, we used the BUSCOs program to test the
gene dataset from each haplotype. The TEs were identified using
EDTA (v2.0.0) [85] with default parameters for each haplotype.
In addition, we identified tandemly repeated sequences using
the tandem repeats finder (TRF) program (v4.09.1) [86] with
parameters ‘2 6 6 80 10 50 2000 -h’ and investigated the
prominently repeated units for each chromosome in both
haplotypes. The centromere sequences were also examined
using the CENH3-based Chip-seq assay data from the mandarin
Nadorcott genome [87]. The CENH3 sequences were collected
from BankIt ID 2305947. These reads (including the input library
as a control) were aligned to the two assembled haplotypes using
Bowtie2 (v2.5.1) [38] with default parameters. MACS2 (v2.2.7.1)
[88] with the additional parameters ‘-f BAM -ghs -B -q 0.01’ was
used to perform peak calling.

Furthermore, we calculated the density of repeat elements
including TEs and tandem repeats based on 500-kb non-
overlapping windows. The number of heterozygous SNPs, InDels
and SVs were also calculated based on 500-kb non-overlapping
windows. To characterize the homologous chromosomes, we
prepared alignments with two haplotypes using Minimap2 [89]
(v2.26) and analysed the blocks of collinearity. All these data
were imported to the Circos [90] program (v0.69–6) to generate a
circular plot.

Genome collinearity analysis
We analysed the collinearity of our assemblies (haplotype A
and haplotype B) and the SWOv3 genome. The sequences
were aligned using Minimap2 (v2.26) [89] and subsequently,
structural rearrangements were found using the Syri pro-
gram (v1.6.3) [91]. The collinearity analyses were plotted
using Plotsr (v1.0.0) [92] and were associated with a VCF file
that included candidate genomic arrangements. The BAM
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file was checked in the Integrative Genomics Viewer (IGV)
program.

Genetic source and divergence identification
To identify the genetic source from mandarin and pummelo, we
collected Citrus grandis (L.) Osbeck.cv. ‘Cupi Majiayou’ v1.0 and C.
reticulata v1.0 genomes from the Citrus Pan-genome to Breeding
Database (http://citrus.hzau.edu.cn/download.php). We built a
species-specific kmers dataset using the ‘count compress’ and
‘difference’ functions from the Meryl program. The sequences
from haplotype A and B were split into 500-kb regions and com-
pared with the species-specific kmers dataset. Finally, the number
of kmers from each haplotype were characterized and plotted in
ggplot2 [93] from the R package [94].

To estimate the mapping quality and kmers difference, we
compared the kmers mapping ratio between two haplotypes
(compared between homologous chromosome) and species
(species-level divergence) using specific kmers with k = 21 and
k = 61, respectively. The unique kmers mapping ratios for each
chromosome were estimated with the number of non-overlapping
kmers and the number of unique kmers.

Construction of genomic variation maps
We used haplotype A as the reference for the reads mapping
analysis. The HiFi reads were collected to identify heterozygous
SNPs and short InDels using the haplotype-aware variant
calling pipeline PEPPER-Margin-DeepVariant (https://github.
com/kishwarshafin/pepper) with the default parameters. The
heterozygous variations with high quality (tag with PASS) were
kept to build a heterozygous short variation dataset. The HiFi
reads were mapped to haplotype A and the SV variation maps
were generated using CuteSV [95] in the HiFi reads mode. Within
the heterozygous SVs, we defined large SVs (>50 bp) and the large
insertions and deletions (>100 bp). The downstream statistic of
SV-related genes was generated based on the insertion/deletion
dataset.

Transcriptomic analysis
The RNA-seq data from five developmental stages of sweet orange
fruit were collected and mapped to haplotype A using STAR. The
transcript per million (TPM) value and normalized count were
calculated using edgeR (v3.42.2) [96] and Rsubread (v2.14.0) [97].
We normalized the expression matrix and performed statistics to
select DEGs (FDR <0.05). To capture the high-quality DEGs, we set
the expression threshold line of DEGs at TPM >1. To investigate
allele-specific expression in sweet orange during fruit develop-
ment, we further calculated the number of heterozygous SNPs
in the coding region of each gene. The 16 785 biallelic genes
were identified using the Genespace program (v.1.2.3) [98]. Based
on heterozygous SNPs, we estimated the expression levels of
alleles using the aScan program (https://github.com/Federico77z/
aScan/). The allelic reads were identified using the heterozygous
SNP dataset. Multiple testing was performed using FDR. To val-
idate the correlation between heterozygosity (indicated by SNPs
and SVs) and ASE genes, we split the genome into 500-kb windows
and calculated the proportion of ASE genes in each window. The
heterozygosity was estimated using the SNPs and SVs in each
window. The fold-change in the expression levels of ASE genes was
estimated using the average fold-change derived from ASE genes
in each window. The potentially highly expressed alleles were
characterized with more expressed reads and for these alleles.
Fold-changes in expression were calculated based on the reads
count. Genes with a fold-change >2 and reads count >100 for

the highly expressed allele were defined as extreme allele specific
expression (EASE) genes. We used the heterozygous SNPs to infer
the relationship between the highly expressed alleles and the hap-
lotypes and examined RNA-seq read mapping in IGV. Three allelic
patterns were identified for EASE genes. We evaluated the relative
significance of EASE genes and their module memberships using a
weighted correlation network analysis (WGCNA) in the R package
[99].

Somatic variation detection strategy
Because sweet orange originated as an admixture of pummelo
and mandarin with high levels of heterozygosity, the haplotype
divergence and kmers based mapping ratios were similar to the
mandarin-pummelo species level according to the sequence
analysis. We were cautious about developing a haplotype-
based mapping strategy to detect the somatic variations in
the sweet orange genome. At the beginning, we detected short
somatic variations using a single-reference mapping strategy
and generated a somatic variation map with a strict filtering
method. The average number of detected somatic variations for
each accession was calculated to generate the base frequency.
Therefore, we constructed a matrix of base mutations using
the Jukes-Cantor model. To eliminate false positive mutations,
we simulated reads based on sweet orange haplotypes without
mutations. The falsely mutated positions that were detected were
marked and removed in the downstream analysis. Subsequently,
we performed 100 simulations based on the base mutation matrix
and assigned the number of SNPs and short InDels to validate the
detection of somatic variations using two haplotype sequences.
These reads were mapped to the two haplotype sequences using
BWA MEM (v0.7.17) [100]. Variation was called using Deepvariant
(v1.0.0) [101]. The SNPs and short InDels were filtered with a
quality <50 and a read depth <2. The recall ratio equals the
number of detected variations compared to the number of
assigned variations. Our simulations revealed that a haplotype-
based mapping strategy could detect the mutations associated
with the correct position and distinguish haplotypes. Compared
with single-reference mapping, the genotype is important for
identifying somatic variations. Incorrect genotypes may be
filtered out with single refence mapping. The genotype was
not considered during the mapping of the two haplotypes. In
addition, we checked the flanking 150-bp sequence obtained for
each mutation. If the sequence on the corresponding homologous
region is completely consistent, it will be considered as a duplicate
call, and only one mutation will be kept. Thus, more realistic
mutation location information can be captured.

To test whether there is a correlation between the reads cov-
erage and the variation recalling ratio, we simulated sequencing
reads with different coverage. The coverage was inferred based on
the size of one haplotype. We calculated the recal ratio using three
assumptions: (i) single-reference mapping for detecting muta-
tions with the precise genotype; (ii) single-reference mapping
for detecting mutation positions not considering the genotype;
and (iii) haplotype-based mapping for detecting mutations. The
high depth of coverage contributes to the equilibrium of three
assumptions.

Somatic variation map in the sweet orange
genome
We combined nine new sequences and previously published
sequences from 78 somatic sweet oranges [3] to construct a
short somatic variation map using a haplotype-based mapping
method. To obtain a reliable somatic variation map for real data
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in practice, we additionally tested the distribution of genome-
wide somatic variations. Non-overlapping 50-kb windows that
were significantly out of the binomial distribution were removed.
Therefore, we obtained a reliable somatic variation map for sweet
orange. Furthermore, we built a network phylogenetic tree using
the SplitTree program (v5.3.0) [102] based on the somatic variation
map. The seven clades were inferred based on the topology.

To describe the ancestral status of variations in the sweet
orange somatic population, we calculated the derived somatic
mutations based on the ancestral sequences inferred from ear-
lier clade I, which was reported as the oldest lineage from the
clonal propagation of sweet orange. The individual allele fre-
quency spectrum of somatic mutations was constructed based on
79 sweet orange accessions. To investigate the number of deleteri-
ous somatic mutations and LoF variants, we predicted the poten-
tial influence of somatic variations using the SIFT 4G algorithm
[103]. First, we created genomic databases with SIFT predictions
and annotated variants using the SIFT 4G Annotator. Based on
the SIFT annotation database, SNPs located in CDS regions were
annotated as synonymous or nonsynonymous. Second, an amino
acid substitution was predicted to be deleterious if the score was
≤0.05 and tolerated if the score was >0.05. Because the sweet
orange somatic population is relatively young, it is difficult to
evaluate selection by directly calculating dN/dS. To evaluate the
selection of genome-wide variations, we introduced the normal-
ized dN/dS value as recommended by Martincorena et al. [42].
We simulated genome-wide mutations with natural effects and
inferred the dN/dS value, which was the distribution of natural
somatic sites. The dN/dS values were estimated based on the
matrix of base mutations in sweet orange using the Jukes-Cantor
model correction and subsequently, normalized to the simulated
natural distribution. Given that population size influenced the
pattern of somatic mutations in long-term propagated sweet
orange, we cannot exclude the effects of somatic drift. Finally,
Sanger sequencing was used to check the somatic mutations.
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